If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-20x-11=0
a = 2; b = -20; c = -11;
Δ = b2-4ac
Δ = -202-4·2·(-11)
Δ = 488
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{488}=\sqrt{4*122}=\sqrt{4}*\sqrt{122}=2\sqrt{122}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{122}}{2*2}=\frac{20-2\sqrt{122}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{122}}{2*2}=\frac{20+2\sqrt{122}}{4} $
| 6u+18=0 | | -3s–7=-4 | | -5t+20t+60=0 | | 3s–7=-4 | | 9+8a=1 | | 3(x-1)-2(6-4x)=2 | | -z/2+24=36 | | 20s-13=67 | | 150=300/x | | 4+4d=6+d | | 4(c+2)=c | | 7(2t+4)=4(2t-7) | | -8+d/15-4=0 | | x/12+20=20 | | 5w+29=79 | | -27+4y-9=0 | | 22x=36/22 | | 3z+20=4z+6 | | 6y-4y+9y=215 | | -1/5x-18-5=0 | | 31+f/14=42 | | -9t-15-66=0 | | 6/7+7y/9=8 | | 4y+6=10y+13 | | -18+13c=8 | | 3(8-s)+4=-4 | | 2x+1-6×=13 | | 161=69-x | | 6x+4=2(2x+−5) | | 6x+15=3x+12 | | 2x+3/5+2=23 | | 6h-17=73 |